
Coxeter Generators and Degenerate Affine Hecke Algebras

Ryan Abbott

June 27, 2018

Abstract

We will consider the spectra of the YJM elements, defining the set Spec(n) and outlining how we
will use this set to construct the representations of Sn. We will then use the Coxeter Generators of
Sn along with their relations to the YJM elements to motivate the definition of the Degenerate Affine
Hecke Algebra H(2). By studying the representations of H(2), we will gain valuable information
on the elements of Spec(n), which will bring us closer to constructing the representations of Sn.

1 Review of Prior Theorems/Definitions

The following have all been proved or defined in prior talks; see Micah or David’s notes for a more
detailed discussion.

Definition 1. The Gelfand-Tsetlin Algebra GZ(n) is the algebra generated by the centers Zi of
C[Si] ⊂ C[Sn] for 1 ≤ i ≤ n:

GZ(n) = 〈Z1, . . . Zn〉

Definition 2. The Young-Jucys-Murphy elements Xi, or YJM elements, are elements of C[Si]:

Xi = (1i) + (2i) + · · ·+ (i− 1, i)

In particular, X1 = 0.

Theorem 1. Zn ⊂ 〈Zn−1, Xn〉

Corollary 1. The YJM-elements are a basis for the Gelfand-Tsetlin algebra, i.e.

GZ(n) = 〈X1, . . . , Xn〉

Proof. Proof by induction. The base case is easy: GZ(2) = C[S2] = 〈X1, X2〉 = C2. Therefore we
must use GZ(n−1) = 〈X1, . . . , Xn−1〉 to prove GZ(n) = 〈X1, . . . , Xn〉. Equivalently, we may show
GZ(n) = 〈GZ(n− 1), Xn〉, which we will show by demonstrating both inclusions.

GZ(n) ⊃ 〈GZ(n− 1), Xn〉 is obvious since Xn ∈ GZ(n) and GZ(n− 1) ⊂ GZ(n).
For GZ(n) ⊂ 〈GZ(n− 1), Xn〉, note GZ(n) = 〈GZ(n− 1), Zn〉 by definition, so it suffices to

show Zn ⊂ 〈GZ(n− 1), Xn〉. This follows from the above theorem:

Zn ⊂ 〈Zn−1, Xn〉 ⊂ 〈Gn−1, Xn〉

Theorem 2. The branching graph of Sn is simple.

Corollary 2. The algebra GZ(n) is a maximal commutative subalgebra of C[Sn]. Thus the Gelfand-
Tsetlin basis is determined in each irreducible representation of Sn up to scalar factors.
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This corollary allows us to make a definition:

Definition 3. The Young basis Y is the union of all Gelfand-Tsetlin bases of all irreducible repre-
sentations of Sn:

Y =
∐
λ∈Sn̂

{vT }λ

Where we’ve denoted the Gelfand-Tsetlin basis in the irreducible representation λ by {vT }λ.

This last proposition has not explicitly been mentioned before, but will be useful for a later
proof:

Proposition 1. Let T = λ0 ↗ λ1 ↗ · · · ↗ λn. Then

C[Si] · vT = V λi

Proof. Firstly note that for any v ∈ V λ, with V λ an irreducible representation of G, we have
C[G] · v = V λ as C[G] · v is a nonempty subrepresentation of V λ. Since vT ∈ V λi the proposition
follows.

2 Weights and Spec

Recall from earlier (David’s talk) that the Gelfand-Tsetlin algebra is the algebra of all operators
diagonal in the Gelfand-Tsetlin basis. This holds in any basis, so in particular it holds for the
YJM-elements. Therefore we may make the following definition:

Definition 4. For an element v ∈ Y, the weight of v denoted α(v) is given by

α(v) = (a1, . . . , an) ai ∈ C

Where Xiv = aiv for all i.

As David proved earlier, an element v ∈ Y is determined solely by the eigenvalues of the elements
of GZ(n) acting of v. Therefore v → α(v) is a one-to-one correspondence, the inverse of which we
will refer to by α→ vα.

We can put all of the weights together into a set:

Spec(n) = {α(v) | v ∈ Y}
By the above, we see Spec(n) is in bijection with the Young basis, so we have

|Spec(n)| = |Y| =
∑
λ∈Sn̂

dimV λ

Furthermore we can extend this bijection to paths T in the branching graph; we will denote this
bijection by

T → α(T ), α→ Tα

There is also a natural equivalence relation on Spec(n). Denoting the relation by ∼, we have α ∼ α′
if and only if vα and vα′ lie within the same irreducible representation. Or, equivalently, if Tα and
Tα′ end in the same position. It is easy to see that Spec(n)/ ∼ is in bijection with the set of
irreducible representations Sn̂ , or otherwise stated:

|Spec(n)/ ∼ | = |Sn̂ |
The procedure for the remainder of the proof will be as follows:

1. Describe the set Spec(n)

2. Describe the equivalence relation ∼
3. Use the above to compute matrix elements in the Young basis (i.e., compute the irreducible

representations)

4. Compute the characters of the irreducible representations

In order to begin the first of these items, we will begin with the study of Coxeter Generators
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3 Coxeter Generators

Definition 5. The Coxeter generators {si} of Sn are given by transpositions of adjacent elements,
i.e.

si = (i, i+ 1) 1 ≤ i < n

An important feature of note here is that these generators mostly commute with each other,
except for adjacent elements:

sisj = sjsi, i 6= j ± 1 (3.1)

This property has been termed locality (a term taken from physics), and leads to the following
proposition:

Proposition 2. Let T = λ0 ↗ · · · ↗ λn. For any 1 ≤ k < n, we can write sk · vT as a linear
combination of vectors vT ′, T ′ = λ′0 ↗ · · · ↗ λ′n satisfying

λ′i = λi i 6= k

This proposition captures the idea that the Coxeter generators act locally on the branching
graph, with sk only affecting the branching in sk.

Proof. Suppose i > k. Then by Proposition 1 we have

C[Si] · (sk · vT ) = (C[Si]sk) · vT = C[Si] · vT = V λi

Which shows that sk · vT contains only vectors vT ′ which contain the branch λi.
If i < k then sk commutes with everything in Si (see (3.1)), so we have

C[Si]sk · vT = sk · C[Si] · vT = sk · V λi

But also since sk commutes with Si, left multiplication by Si is an Si-morphism, so sk · V λi = V λi

and the proof follows as above.

4 The Degenerate Affine Hecke Algebra H(2)

4.1 Motivation and definitions

In order to use the Coxeter generators to study the representations of Sn, we wish to study their
relation to another object we’ve been using: the YJM elements. Due to the locality of the Coxeter
generators, this has a particularly simple form in most cases:

siXj = Xjsi, j 6= i, i+ 1

Meanwhile, for the edge cases we have a different relation, which can be easily verified:

siXi + 1 = Xi+1si

This last relation will be important for us. Since this is a local relation, we can use this relation to
study C[Sn] only at the point where we transition from C[Si] to C[Si+1], i.e. at the ith level of the
branching graph. Therefore we consider the algebra generated by this relation:

Definition 6. The algebra H(2) is defined as the algebra generated by elements Y1, Y2, and s with
the following relations:

s2 = 1, Y1Y2 = Y2Y1 sY1 + 1 = Y2s
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Note this is the algebra generated by si, Xi, and Xi+1, except phrased in a more abstract sense.
From the above, the next proposition should be obvious:

Proposition 3. The algebra C[Sn] is generated by C[Sn−1] and H(2), where we recognize H(2) as
the subalgebra generated by

Y1 = Xn−1 Y2 = Xn s = sn−1

Note that C[Sn−1] and sn alone generate C[Sn]. However, by adding these additional generators
we allows ourselves to use the study of the irreducible representations of H(2) to help build up
the representation theory of Sn. In particular, we may restrict any representation of Sn to a
representation of H(2), so if we may find conditions on the representations of H(2) then these will
lead to conditions on the representations of Sn.

Remark 1. As the notation suggests, what we have defined as H(2) is only one of an infinite
chain of algebras. The nth such algebra, denoted H(n), is generated by elements Y1, . . . Yn and
s1, . . . , sn−1 with relations

YiYj = YjYi s2i = 1

Yisj = sjYi j 6= i, i+ 1

siYi + 1 = Yi+1si

We will only be using the algebra H(2).

4.2 Irreducible representations of H(2)

In order to study the irreducible representations of H(2), we first note that Y1 and Y2 commute by
definition; therefore they have a common eigenbasis and we can find a vector v in any representation
such that

Y1v = av

Y2v = bv

Now consider the span of v and s·v, where s ∈ H(2). It is easy to check from the relations above that
this subspace is closed under the action of H(2); therefore span{v, sv} forms a subrepresentation
and every irreducible representation of H(2) must be at most 2-dimensional.

We should note, before proceeding, that the particular case we are interested in is Y1 = Xi,
Y2 = Xi+1, and s = si. Under this correspondence, if v is an element of the Young basis and
α(v) = (a1, . . . , an) is its weight, we have

a = ai

b = ai+1

This correspondence will allow us to conclude restraints on the elements of Spec(n) from the
irreducible representations of H(2).

Working in the basis {v, sv}, we can compute matrix elements for H(2), e.g.,

Y2sv = (sY1 + 1)v = a(sv) + v

This allows us to read off the second column of the matrix representing Y2. Repeating for every
required matrix element, we have the following matrices:

Y1 =

(
a −1
0 b

)
Y2 =

(
b 1
0 a

)
s =

(
0 1
1 0

)
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We can compute the eigenvectors of these matrices. Both Y1 and Y2 share have a common eigenbasis,
and v is one such eigenvector by definition. We may also find another eigenvector w given by:

w =

(
1

b− a

)
= v + (b− a)sv

Note that if a = b, then this second eigenvector is degenerate, i.e. v = w. Therefore Yi are
diagonalizable if and only if a 6= b. Since the YJM elements are always diagonalizable (in particular,
they are diagonal in the Young basis), when we set Y1 = Xi and Y2 = Xi+1 this rules out the
possibility of a common eigenvalue of Xi and Xi+1 on the same eigenvector. For v ∈ Y, this gives
us the restriction that if α(v) = (a1, . . . , an), then ai 6= ai+1 for any i.

At this point, we split off into two cases: b = a± 1 and b 6= a± 1.
If b = a± 1, then we have w = v ± sv. Applying s to w, we have

sw = s(v ± sv) = sv ± v = ±w

Thus we see w is a common eigenvector of every element of H(2), which means that span{w} is a
subrepresentation. We can also obtain a converse to this fact: suppose that u is a vector such that
v and sv are proportional. Then in order to have s2 = 1 we must have

sv = ±v

Thus we may compute

bv = Y2v = ±Y2sv = ±(sY1 + 1)v = (a± 1)v

=⇒ b = a± 1

In terms of Spec(n), we make the substitution a = ai and b = ai+1. This tell us that if (and only
if) ai+1 = ai ± 1, then siv = ±v for vα ∈ Y.

Meanwhile, if ai+1 6= ai ± 1, then the 2-dimensional representation defined above is irreducible.
This means v and w, taken to be elements of the Young basis, fall within the same irreducible
representation, since we can act s + b − a = si + ai+1 − ai on v to obtain w. Furthermore we can
deduce the action of Xi = Y1 and Xi+1 = Y2 purely from ai and ai+1. Working in the basis {v, w′},
where w′ = (ai+1 − ai)−1w (we choose this normalization for properties which go beyond the scope
of this talk), we can compute the matrix elements:

Xi =

(
ai 0
0 ai+1

)
Xi+1 =

(
ai+1 0

0 ai

)
si =

(
1

ai+1−ai 1− 1
(ai+1−ai)2

1 1
ai−ai+1

)
(4.1)

4.2.1 Summary

We can summarize all of this in the following proposition:

Proposition 4. Let
α = (a1, . . . , ai, ai+1, . . . an) ∈ Spec(n)

Then

1. ai 6= ai+1 for all i

2. if ai+1 = ai ± 1, then si · vα = ±vα
3. if ai+1 6= ai ± 1, then

α′ = si · α = (a1, . . . , ai+1, ai, . . . , an) ∈ Spec(n)

and α′ ∼ α (i.e. vα and vα′ lie in the same irreducible representations). Additionally, we have

vα′ =

(
si −

1

ai+1 − ai

)
vα

and the action of si, Xi, and Xi+1 on the basis {vα, vα′} is given by the matrices in (4.1)
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Corollary 3. Given α ∈ Spec(n) as above, ai ∈ Z for all i.

Proof. Suppose not; then there exists some first i ≥ 1 such that ai = a 6∈ Z. Using item 3 in
the above proposition,1 we can apply si−1 to α to obtain α′ ∈ Spec(n) such that ai−1 = a 6∈ Z.
Repeating this procedure, we can move a to the left until a1 = a 6= 0. However, since X1 = 0 we
must have a1 = 0, which is a contradiction.

As we can see, this analysis has greatly restricted which vectors can be in Spec(n). For example,
a2 must be ±1, as otherwise we could switch a2 and a1 to obtain an element of Spec(n) with a1 6= 0.

1We can never have ai = ai−1 ± 1 since ai−1 ∈ Z and ai 6∈ Z
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